

10MCF400Nd

MID FREQUENCY TRANSDUCER

KEY FEATURES

- Very high effciency mid-range driver
- Carbon fiber cone for optimum loading behaviour and low distortion
- Extremely linear frequency response
- 4" edgewound aluminium voice coil
- 800 W program power

- · High efficiency and sensitivity
- FEA optimized neodymium magnet structure
- Sealed cast aluminium frame
- Designed for high performance mid-frequency line array and horn loading applications

TECHNICAL SPECIFICATIONS

Nominal diameter	250	mm	10 in
Rated impedance			8 Ω
Minimum impedance			8,5 Ω
Power capacity ¹			400 W _{AES}
Program power ²			800 W
Sensitivity	102 dB	1W /	1m @ Z _N
Frequency range		300 -	5.000 Hz
Voice coil diameter	101,6	mm	4 in
BI factor			28,8 N/A
Moving mass			0,040 kg
Voice coil length			11,5 mm
Air gap height			10 mm

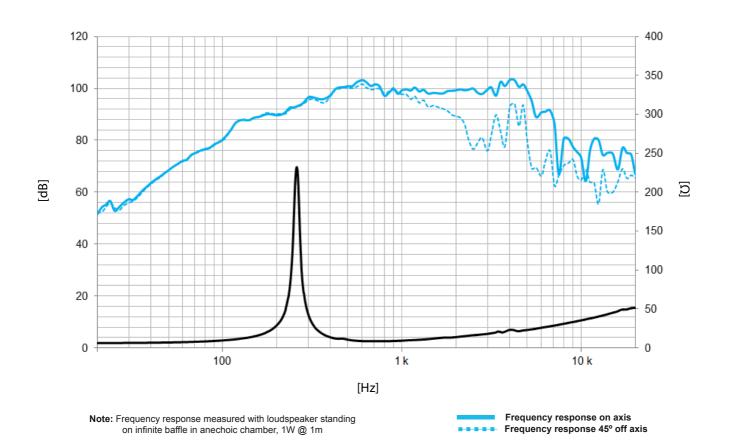
THIELE-SMALL PARAMETERS 3

Resonant frequency, f _s	260 Hz
D.C. Voice coil resistance, R _e	5,8 Ω
Mechanical Quality Factor, Q _{ms}	22
Electrical Quality Factor, Q _{es}	0,45
Total Quality Factor, Qts	0,44
Equivalent Air Volume to C _{ms} , V _{as}	21
Mechanical Compliance, C _{ms}	10 μ m / N
Mechanical Resistance, R _{ms}	3 kg / s
Efficiency, η ₀	7,2 %
Effective Surface Area, S _d	$0,038 \text{ m}^2$
Maximum Displacement, X _{max} ⁴	3,5 mm
Displacement Volume, V _d	133 cm ³
Voice Coil Inductance, L _e @ 1 kHz	0,5 mH

Notes

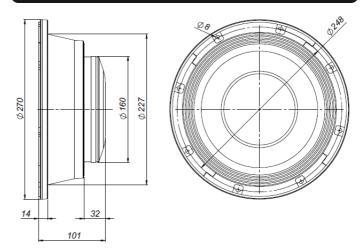
¹ The power capaticty is determined according to AES2-1984 (r2003) standard.

² Program power is defined as power capacity + 3 dB.


³ T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

 $^{^4}$ The $\rm X_{max}$ is calculated as ($\rm L_{vc}$ - $\rm H_{ag}$)/2 + ($\rm H_{ag}$ /3,5), where $\rm L_{vc}$ is the voice coil length and $\rm H_{ag}$ is the air gap height.

10MCF400Nd


MID FREQUENCY TRANSDUCER

MOUNTING INFORMATION

Overall diameter	270 mm	10,6 in
Bolt circle diameter	248 mm	9,8 in
Baffle cutout diameter:		
- Front mount	227 mm	8,9 in
Depth	103 mm	4,1 in
Net weight	6,2 kg	13,7 lb
Shipping weight	6,6 kg	14,5 lb

DIMENSION DRAWING

